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Key goals

▪ Develop and demonstrate at the laboratory scale an advanced optical suite of instrumentation technologies for

enhanced monitoring of gas turbine thermal barrier coatings (TBCs)

▪ One-year extension assigned for the demonstration of surface temperature measurement capability and

deployment of the instrumentation on an engine rig for in-situ phosphor thermometry

Project Tasks (Tasks 1-5: Oct 2017 – Oct 2020, + Task 6: Oct 2020 – Oct 2021)

Task 1: Project Management & Planning

Task 2: Define and manufacture sensor configuration

Task 3: Establish Sensing Properties and Characterize Coating Response for Luminescence Based Sensor

Task 4: Perform Non-Intrusive Benchmarking Measurements of Surface Temperature and Strain

Task 5: Develop and Test Laboratory Scale Sensor Instrumentation Package

Task 6: Instrumentation adaptation to engine rig + surface measurements
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Task 6: Instrumentation adaptation to engine rig + surface measurements



Overview of the presentation

▪ Background, Motivations & Objectives

▪ Thermal Barrier Coatings and their benefits

▪ Research effort was focused on providing solutions for the following:

▪ Higher accuracy of temperature measurements (part A)

▪ Phosphor Thermometry experimentation

▪ Improving methods for coating damage monitoring (part B)

▪ Coating damage monitoring

▪ Conclusions and perspectives
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Background, Motivations & Objectives
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▪ Thermal barrier coatings (TBCs) used in

combination with air cooling to protect metal

substrates from extreme temperatures in the

high-pressure turbine (1300 to 1600°C)

▪ Air film cooling: Δ𝑇= -100 to -400°C

▪ TBC: 𝜟𝑻= -150 to -200°C [3,4,5,6]

▪ Major applications:

▪ Aeroengines

▪ Power generation engines

a) Cutaway view of the new GE9X aircraft engine

b) Photograph of a turbine blade coated with TBC

c) SEM micrograph of an EB-PVD TBC top coat

Thermal Barrier Coatings (TBCs)

a. Image source: GE Image source: GE

Darolia, R. International 

Materials Reviews 58.6 

(2013): 315-348.

b.

c.
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Bacos, M. P., et al. Review of ONERA Activities (2011).

Darolia, R. International Materials Reviews 58.6 (2013): 315-348.
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Review of TBC materials properties

TBC layer

Typical composition

Top coat

7-8wt.%YSZ

TGO

Al2O3

Bond coat

NiCrAlY / PtAl

Thermal conductivity 𝜆 at 1100°C (W/(m⋅K )) 1-3

[1,2,4,5]

5-6

[4,6]

34

[5]

Coefficient of thermal expansion 𝛼 (×10-6 K-1) 11-13

[3,4,7,8]

7-10

[3,7,8,9]

13-16

[3,7,8,9]

Elastic modulus (GPa) 0-100 [13] 320-434

[3,7,8,9]

110-240

[3,7,9]

Toughness K (MPa⋅ √m) 0.7-2.2

[7,10]

2.8-3.2

[7,11]

>20

[7]

Poisson’s  ratio 𝜈 0.2

[8]

0.2-0.25

[8,9]

0.3-0.33

[8,9]

Oxygen diffusivity at 1000°C (m2/s) 10-11 [4] 10-19-10-21 [4,6] -

Crystal microstructure (phase)

Stable up to

𝑡’
1200°C [12]

𝛼
1750°C

𝛽, 𝛾
1050°C
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Thermally grown oxide (TGO) formation in TBCs
Importance of controlling the operating temperature

▪ Logarithmic growth limited by the low oxygen diffusivity through the

TGO: 𝟑𝜷𝑵𝒊𝑨𝒍 +
𝟑

𝟐
𝑶𝟐 → 𝜸′𝑵𝒊𝟑𝑨𝒍 + 𝜶𝑨𝒍𝟐𝑶𝟑
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Wang, L., et al Journal of thermal spray 

technology 23.3 (2014): 431-446.

Temperature drives oxide 

growth in TBCs and is a key 

factor in coating failure

Liu, Y. Z., et al. Journal of the European Ceramic Society 36.7 (2016): 

1765-1774.

Bernard, B., PhD dissertation, Université de Lorraine (2016)

Wu, B, et al. Journal of the American Ceramic 

Society 72.2 (1989): 212-218.

Jackson, R, PhD dissertation University of Birmingham (2009)
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Phase stability in Thermal Barrier Coatings (TBCs)
Importance of controlling the operating temperature

▪ Standard top coat material: 7-8wt.% (4-4.5 mol.%) YSZ optimal for resistance to spallation and thermal

stability Patnaik, P. et al, National Research Council Of Canada Ottawa, Ontario (2006)

▪ Y3+ introduces oxygen vacancies that stabilizes 𝒕′

1200°C 600°C
𝚫𝑽 = +𝟒%

Witz, G., et al. Advanced Ceramic Coatings and 

Interfaces II: Ceramic and Engineering Science 

Proceedings, Volume 28, Issue 3 (2007): 39-51.

▪ High temperature sintering of t’-YSZ:

▪ Pore coarsening → thermal conductivity

increase Guignard, A. Vol. 141. Forschungszentrum, Jülich, (2012).

▪ Crack forming

▪ 𝒕′ phase stable up to 1200°C:

▪ 𝒕′ 𝒕 + 𝒄 𝒎 + 𝒄

Accurate control of TBC operating temperature is 

needed to control degradation of coatings.
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Witz, G., et al. Advanced Ceramic

Coatings and Interfaces II: Ceramic and

Engineering Science Proceedings,

Volume 28, Issue 3 (2007): 39-51.
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Significance of TBC temperature measurements

Problem statement:

Accurate determination of thermal gradients in Thermal Barrier Coatings (TBCs) is

critical for the safe and efficient operation of gas turbine engines.

Failure mechanisms are thermally activated during engine operation, uncertainty in

temperature measurements contribute significantly to lifetime uncertainty.

𝜼 = 𝟏 −
𝑻𝒄

𝑻𝒕

• State-of-the-art TBCs are not being used to

their highest potential because of

uncertainties in temperature measurements

at high-temperature.

• Safety margins as high as 200°C are

used.
Steenbakker, R, (2009) Journal of Engineering for Gas Turbine and Power, 131-

4 p 041301

• Ideal Brayton cycle efficiency:

• 1% efficiency improvement can save $20m in

fuel over the combined-cycle plant life.

• A 130°C increase leads to a 4% increase in

engine efficiency.

Ruud, J, (2003). Performance of the Third, 50 pp 950-4.

• Failure mechanisms are driven by

temperature conditions in the depth of the

TBC.
𝜂: cycle efficiency, 𝑻

𝒄

𝑻𝒕
: temperature ratio compressor

exit / turbine inlet.
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Measurement techniques for in-situ temperature evaluation of TBCs 

Thermocouples Infrared Thermometry Phosphor Thermometry

Operational 

temperature 

range (˚C)

-250 to 2320 -50 to 2000 -250 to 1700

Advantages - Inexpensive

- Wide temperature 

range

- Wide temperature 

range

- Non-contact method

- Fast response time

- Non-contact method

- High sensitivity at 

high temperatures

- Fast response time

- Usable on rotating 

parts

- Low sensitivity to 

turbine environment 

(aging and 

contamination)

Drawbacks - Intrusive probe

- Disrupts flow 

patterns

- Not chemically stable 

in all environments

- Low accuracy

- Unusable on rotating 

surfaces

- Optical access 

required

- Sensitive to stray 

light (flames)

- Sensitive to 

emissivity variations

- Optical access required

- Signal weakening at 

high temperatures

Gas turbine 
efficiency 

Components
lifetime
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Other critical failure mechanisms: Foreign object damage / Erosion
Importance of controlling coating health

• Unpredictability of the impact damage/erosion

• Amount of degradation

→ Importance of improving methods for detection and quantification of delamination

11

Lima, Rogerio S., Bruno MH Guerreiro, and Maniya Aghasibeig. Journal 

of Thermal Spray Technology 28.1-2 (2019): 223-232.
Tanaka, Makoto, Yu-Fu Liu, and Yutaka Kagawa. Journal of Materials 

Research 24.12 (2009): 3533-3542.
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Direct damage monitoring methods

• Thermal/optical imaging techniques;

• Infrared thermography in mid-wave or long-wave infrared, post-exposition to an intense

heat source (generally a flash of light).

• Tomography

• Laser scattering

• Luminescence-based mapping (in-situ or ex-situ monitoring), under excitation at specific

wavelength.
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Luminescence imaging provides:

• Finer spatial resolution

• Richer information through spectral features
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Proposed solutions & key objectives

• Better temperature control in gas turbine engines is needed to improve engine efficiency and

reduce maintenance and operation costs (part A)

→ Implementation of phosphor thermometry instrumentation with accuracy/precision improvement vs.

current state-of-the-art

→ Determination of precise sub-surface location of phosphor thermometry measurement point

• Intense operation of TBC systems results in coating failure that impacts engine availability

(parts B and C)

→ Development of a novel approach for delamination monitoring using luminescent coatings (compatible

with phosphor thermometry coatings)

→ Verification of sensor coating properties in operational environments
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Part A: Phosphor Thermometry measurements
Part of tasks 2, 3, 4, 5 & 6
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Phosphor Thermometry – fundamentals

15

▪ Electronic configuration determines the usable excitation wavelength.

▪ Emission wavelength is generally longer than excitation wavelength.

Absorption 

and emission 

spectrum of 

YSZ:Dy

Peng, Di, et al. 

Sensors 16.10 

(2016): 1490.

Fouliard Ph.D. dissertation

▪ Typical dopants are rare-earth elements 

and transition metals.
Brübach et al., Progress in Energy and Combustion Science (2013) 39(1), pp. 37-60

Chambers, M., and Clarke, D. Annual Review of Materials Research 39 (2009): 325-359.

Allison, S. and Gillies, G. Review of Scientific Instruments 68.7 (1997): 2615-2650.

Feist, J., et al. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of 

Power and Energy 217.2 (2003): 193-200.

2.5 mm

Er

luminescence

Brites, Carlos DS, Sangeetha Balabhadra, and Luís D. Carlos. "Lanthanide‐based 

thermometers: at the cutting‐edge of luminescence thermometry." Advanced Optical 

Materials 7.5 (2019): 1801239.
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Instrumentation developed for synchronized luminescence decay collection

Parameters:

Nd:YAG 532 nm

0.5 mJ pulse

10 Hz

20 ns pulse duration

Sample:

Air Plasma Spray (UCF team @

FIT, Melbourne, FL, USA)

YSZ:Er,Eu [1.5% Er, 3% Eu]

(Phosphor Technology, UK)

Annealed 2h @ 800˚C

Fouliard et al., Measurement Science & Technology, 2020
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𝝁𝒎

Er
4S3/2→

4I15/2

Eu
5D0→

7F2

Eu
5D0→

7F1

(Photomultiplier tubes)
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Extension of temperature range vs. state-of-the-art

Simultaneous acquisition at 500°C

▪ Luminescence of Europium is quenched rapidly past 500°C, for high sensitivity

measurements up to 850°C where reaching detector response limit.

▪ Temperature range extended by collecting the ratio of the normalized intensity

variation Erbium/Europium.

Fouliard et al., Measurement Science & Technology, 2020
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High-speed camera testing setup for coating surface temperature measurements

A first step towards the upgrade/conversion of the setup for 

engine rig testing was to enable surface measurement:

→ Completed successfully with:

• High-speed camera (Photron Nova S12):

• 250k frames/s

• 128x128 pixel resolution

• ISO 64,000

• Infrared camera (TIM450) – reference meas.:

• Longwave (7.5-13 microns)

• Emissivity set to 0.93

• Lifetime decay needs to be calibrated for each pixel for 

high temperature measurements and quantifying 

temperature gradients on coating surface

Room temperature
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High-speed camera testing – heating and measurement methods:

Through 535 nm 

longpass filter 

Er luminescence

• Initial temperature measurements achieved 

during cooling down phase

Burner rig

Laser excitation

TBC plate

Back flat welded 

thermocouple

Top surface 

IR camera 

temperature 

monitoring
532 nm laser 

pulse

Video speed x1/8
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High-speed camera testing – initial measurements:

600˚C 700˚C 800˚C

Expected thermal 

gradient

• Initial temperature measurements tend to show temperature gradient 

from left (hotter, faster decay) to right (colder, slower decay) 

• Current work involves pixel-decay calibration 
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Part B: Coating damage monitoring
Part of tasks 3 & 4
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Modeling delamination

22

Diffuse external reflectivity

𝑳𝒂𝒚𝒆𝒓 n

Air 1

Top coat 2.17

TGO 1.76

𝝆𝒊,𝒎𝒂𝒙

84%

39%Max diffuse internal reflectivity

Frustrated angle-averaged reflectivity

Top coat - Bond coat 4%

Q. Fouliard, R. Ghosh, S. Raghavan Surface and Coatings

Technology (2020): 126153.
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Photoluminescence results
2 sensor EB-PVD TBC configurations including an YSZ:Er layer (provided by NASA Glenn / PSU) were 

characterized by luminescence mapping (tracking of Er-line at 562 nm):

Sensing layer at the bottomSensing layer at the top

Exp time 5 ms Exp time 100 ms
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Q. Fouliard, et al. Surface and Coatings Technology (2020)
• 15 mW, 

• 532 nm excitation

• Focal length: 

• 7.5 mm

• Depth of field: 

• 2.2 mm

• Numerical aperture:

0.27

• Spot size: 200 µm
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Modeling luminescence intensity based on a 2x2 flux Kubelka-Munk model

24

Wolfe, Douglas E., et al Surface and 

Coatings Technology 190.1 (2005): 132-149.
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Q. Fouliard, R. Ghosh, S. Raghavan Surface and Coatings Technology (2020): 126153.

Delamination monitoring: Comparison experiment vs. model
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Q. Fouliard, R. Ghosh, S.

Raghavan AIAA Scitech

Forum 2021.
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Novel approach for delamination sensing using 𝝀-dependent optical properties
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Conclusions & Perspectives

27Background / Motiv. / Obj. Phosphor thermometry meas. Coating damage monitoring Conclusions / Perspectives



▪ Precise determination of temperatures in TBCs can result in large benefits in terms of fuel savings, 

reduction of emission, as well as better monitoring of TBC lifetime 

▪ Enabled the extension of the range of measurable temperatures using phosphor thermometry with 

higher sensitivity by capturing simultaneously luminescence decays and intensities using a co-

doped YSZ:Er,Eu sensor TBC.

▪ Developed surface temperature measurement capabilities using a high-speed camera setup.

▪ Currently extending the instrument to engine rig setup for in-situ temperature measurements.

▪ Enabled accurate determination of delamination in coatings through a novel modeling approach,  

validated with experiments.

Conclusions
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Future work

Ongoing work with collaborators that was initiated with this project:

• Additional synchrotron experiments for rare-earth doped TBC strain measurements (collaboration:

GE Research, Argonne National Lab).

• Model adaptation and experimentation using high-emissivity paints for improved temperature

measurements on painted TBCs (collaborator: GE Aviation).

Task 6:

• Continuation of high-speed camera testing and analysis work.

• Adaptation of the instrumentation to operate on an engine rig (Tasks 1-5 successfully demonstrated

lab-scale functionality as planned – the existing built-up will now be adapted to rapidly increase its

technology readiness level), starting with the exhaust section of UCF (Dr. Ahmed) ramjet engine and

going towards more challenging engine sections like high-pressure turbines or RDE walls.
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Phosphor Thermometry – intensity ratio method

34

Thermalization

▪ Thermal quenching and growing thermal radiation

limits luminescence detection at high temperature.

▪ Thermal filling of the excited states

Hertle, E. et al. Journal of 

Luminescence 204 (2018): 64-74.

Nikolić, Marko G., Dragana J. Jovanović, and Miroslav D. Dramićanin. 

"Temperature dependence of emission and lifetime in Eu 3+-and Dy 3+-

doped GdVO 4." Applied optics 52.8 (2013): 1716-1724.



■ Thermal quenching accelerates decay

due to higher probability of vibrational

deexcitation. Knappe, C. PhD dissertation Lund University (2013)

■ Higher sensitivity of the decay method in

comparison with the intensity ratio

method but often limited to a reduced

temperature range. Heeg, et al. AIP Conference

Proceedings, Vol. 1552, (2013)

Background - Phosphor Thermometry – luminescence decay method

(a) (b)

Schematic of (a) Normalized intensity vs. time for temperature T1

and T2, (b) correlating decay time with temperature

𝑇1 > 𝑇2

𝐼 = 𝐼0 𝑒
−𝑡/𝜏(𝑇)

■ The time dependent intensity is measured

following the excitation pulse to determine the

temperature dependent decay time 𝜏 𝑇 .
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Fouliard Ph.D dissertation

𝜏: lifetime decay,

Wr/nr: radiative and non-

radiative deexcitation rates.

Q: sensor variable (𝜏 or R),

T: temperature

Luminescence lifetime decay:

Absolute sensitivity:

𝜏 =
1

𝑊𝑟 +𝑊𝑛𝑟

𝑆𝑎 =∣
𝑑𝑄

𝑑𝑇
∣



- Instrument optimization for Er and Eu luminescence sensing

- Improved filtering of gas radiation 

- Multi-mode fiber collimator with high-damage threshold (0.5 mJ/pulse ≈20 ns)

Project extension (task 6): Instrument adaptation to engine rig 
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Hossain, Mohammad A., et al. ASME 

International Mechanical Engineering Congress 

and Exposition. Vol. 46421. ASME, 2014.

Project extension: Instrument adaptation to engine rig (initial test) 
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2x2” sensor plate 

placed at top

Viewing port from 

below for phosphor 

thermometry

Lateral viewing port 

for IR meas.

NiCrAlY

IN718

YSZ:Er2
0
0

1
0
0

NiCrAlY

IN718

YSZ:Er1
5
0

50YSZ:Eu

1
0

0 NiCrAlY

IN718

50YAG:Er

1
0
0

NiCrAlY

IN718

YSZ:Er1
5
0

50YSZ barrier

1
0
0

Sample configurations

UCF Ramjet exhaust wall in-situ measurement 

• Er has strong luminescence and close to ideal 

single-exponential decay

• Eu is compatible for simultaneous sensing with Er

• Higher temperatures can be measured either 

through non-luminescent thermal barrier or using 

a garnet host YAG:Er



Synchrotron XRD measurements at Argonne National Laboratory
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• Strain drives cracking / delamination / spallation and is 

closely related to strain at the interface top coat / bond 

coat Schlichting, KW., et al. Materials Science and Engineering: A 342.1-2 (2003): 120-

130.

Tetragonal: 
1

𝑑2
=

ℎ2+𝑘2

𝑎2
+

𝑙2

𝑐2

Bragg’s law: 𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃

• Deviatoric strain which represents non-hydrostatic 

microdeformation can be measured by quantifying 

the eccentricity of the Debye-Scherrer rings. 



K-Type 

Thermocouple

Sample 1Sample 2
Alumina 

spacer

High temperature setup for in-situ characterization of TBCs at the 

synchrotron beamline 
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▪ 200°C/min ramps, 6-min holds

▪ 1 min hold for isothermal state in the top coats then data acquisition

▪ 5 min for data acquisition (0.3 s exposure per point)



Deviatoric strain vs. azimuth on major diffraction rings

▪ We look here at the deviatoric strain measured for peaks (112) and (110) in addition of main analysis peak (101) 
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R1 S1

R0 S0

▪ Room temperature 

measurements

▪ The thermal aging (100h at 

800˚C) resulted in TGO growth 

and compressive in-plane strain

▪ The strain magnitude remains 

comparable overall between 

reference (R) and sensor (S) 

coatings

Measured 

location



Deviatoric strain vs. coating depth using t’-(101)

• Strains were measured with a depth resolution of 15 μm and 3 scans were performed for each coating

and at each temperature hold to solidify results and to be able to statistically compare strain results

• e22 (in blue on the plots) is the in-plane (along the coating surface) strain, which gets compressive closer

to the bond coat after thermal aging and this strain shows particularly at room temperature – generating

coating fatigue under cyclic operation

• Strains are globally similar between R0 and S0 and R1 and S1, with low strain at top coat - bond coat

interface, which is promising for the safe use of sensor coatings as they seem to possess comparable

response under representative environments
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Calculation of in-plane stress for coating comparison

• 𝜎22 calculated for coatings in operational conditions (here measured either at room temperature or at

1000˚C) remains similar in sensor coatings and in state-of-the-art (reference) coatings

42

Room temperature 1000˚C


